奥运五环一笔画完_奥运五环一笔画出来
图形推理是行测判断推理部分的常考题型,而平面图形中的?笔画数?是常考的规律之一。笔画数,就是一个图形是由几笔画成的。其中?一笔画?图形就是从起笔到落笔不间断、不重复可以一笔画成的图形。对于不了解笔画数规律的考生来说,简单图形(如五角星)仅通过观察图形或自己勾画就可以看出是几笔画,相对来说比较好判断,但是对于复杂图形(如奥运五环)的笔画数却不一定能判断正确。那么,考查笔画数规律的时候有什么好的方法来确定图形是几笔画呢?接下来,跟着一起来学习吧!
其实,?笔画数?是有可靠的方法来加以判断的,即通过数?奇点?来确定图形是几笔画。奇点是什么?如果说从某一点出发的线条数为奇数条,那么这个点就是奇点。笔画数和奇点的关系是什么呢?答案就是?笔画数=奇点数?2?。
在这里,有同学或许会问,为什么呢?在说答案之前,大家先设想一下这样一个场景:我们手中拿出一根毛线,毛线缠绕构造出不同的图形,虽然它可以形成很多不同形状,但是我们发现它始终只是一根毛线,而这根毛线有两个头,两个头连接了一条线。这根毛线就类似于平面图形中的一笔画,虽然过程中会有交叉,但它始终是一根完整的线,而每根线有两个头,两个头决定一根线,所以两个奇点决定一笔画。
通过上述特点,大家要明确一点,因为奇点数是在笔画数的基础上乘以2,而笔画数必然是整数,故奇点永远是偶数个。所以,大家在做题时如果数出奇数个奇点,那必然是数错了哦!
接下来,给大家明确一下一笔画图形和多笔画图形要满足的条件。
一笔画图形需要同时满足两个条件是:①连在一起的一部分图形;②奇点数=0或2(奇点数为0是因为两个奇点重合了)。
多笔画图形需要满足以下任意一种情况:①多部分图形(多部分的笔画数相加);②一部分图形且奇点数>2。
? 示例:一笔画图形 ?? 示例:多笔画图形 ?
通过以上图形提醒大家注意:①端点处只放射出一条线(奇数),故端点也是奇点,切勿忽略哦!②多部分图形虽然不一定有奇点,但一定是多笔画(把每部分笔画数相加)!
接下来,为了让大家活学活用,我们通过一道例题更好地感受一下:
例题从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
解析B。 题干图形各不相同,图形相对规整,封闭区域线条等相对分明,尝试对称、直曲及封闭开放性发现无规律,封闭区域和线条数量也无规律。此时考虑笔画数可以发现,题干图形分别呈现奇点数为0,0,2,0,2,均为一笔画图形。观察选项,只有B项有两个奇点,是一笔画图形。而A、C、D项有4个奇点,都是两笔画图形。故选B。
先从左边三个圆的交点起笔,先画左上的圆,回到起点,然后画左下的圆又回到起点,然后画上面中间圆的上半部分或下半部分,到右面三个圆的交点停笔,继续画右上和右下的圆,最后补全上面中间的圆